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Abstract

In several mechanical engineering applications high spatial resolution measurements are required.
Adapted optical measurement instruments such as the laser scanning Doppler vibrometer (SLDV) and the
electronic speckle pattern interferometer (ESPI) exist to perform this task. The result of this high spatial
resolution measurement is that a large amount of data is available which has to be processed. In addition,
care should be taken when processing the measurements, because locations with poor measurement quality
typically exist. In this article a method will be developed to reduce the amount of measurements so that
further processing is less time consuming. In addition, as a side effect of the data reduction method, poor
quality measurements will be filtered and the overall SNR will improve. The method uses an iterative robust
two-step spline approximation with an automatic model order determination procedure. The validation of
the technique is performed both on scanning laser vibrometer measurements of a car door and a circuit
board and on ESPI data.
r 2003 Elsevier Ltd. All rights reserved.

1. Overview of existing techniques

The use of spatially dense optical vibration measurement techniques, such as the scanning laser
Doppler vibrometer (SLDV) [1] or the electronic speckle pattern interferometer (ESPI) [2] results
in a large amount of data which has to be stored. Because further processing (e.g., extracting
modal parameters) of this large amount of data is computationally very expensive, data reduction
procedures should be used. In addition, using a data reduction procedure the optical vibration
measurements (which are often quite noisy, with outliers at several locations) can be smoothed.
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The data reduction procedure transforms the complete set of measurements to a reduced set of
‘virtual’ measurements which contains approximately the same amount of information. An
important assumption of the data reduction method is that the transform should be linear. This is
necessary to guarantee that the poles of the mechanical system under investigation are invariant
under the transformation (this eliminates the use of all lossless image coding techniques which are
available in literature [3]).
Assume that the high spatial resolution frequency response function (FRF) measurements are

written in matrix form H; with H an No by Nf matrix, where No is the number of measured
output locations and Nf the number of measured frequencies (with usually NobNf ). The data
reduction process consists of the following transformation: TH ¼ Hvo; with T the Nvo by No

transformation matrix and Hvo the reduced virtual FRFs, where Nvo are the number of virtual
outputs ðNvo5NoÞ:
One possibility to perform the transformation is to use the singular value decomposition (SVD)

of H: Although the SVD based technique was applied with success in literature for moderate size
data sets (first in Ref. [4] and later in Ref. [5]) the computational load to perform the SVD is too
expensive (order NoN2

f calculations) when several hundreds of thousands of outputs are measured
(in the case of ESPI measurements at one million locations are often available). Also, because the
SVD is a least-squares procedure, the presence of outliers in the measurements can lead to an
incorrect reduced data set.
A computationally much more attractive and more robust alternative was proposed by Arruda

et al. [6,7]. Their so-called regressive discrete Fourier series (RDFS) is a data reduction technique
which uses complex exponential basis functions to approximate the vibration patterns at the Nf

different measurement frequencies. The coefficients of the RDFS approximation of a vibration
pattern at frequency i (for i ¼ 1;y;Nf ) are considered as the reduced virtual measurements
(i.e., columns in Hvo). When the measurement locations are positioned on a square grid (which is
true for ESPI measurements where the measurements locations are pixels of an image) the order
No

ffiffiffiffiffiffiffiffi
Nvo

p
Nv computations are needed. Examples in literature have shown that the RDFS method

works well. However, some improvements can be made to make it faster, more generally
applicable, robust and less user interactive.
In this article, a method also belonging to the class of regressive techniques (such as

the RDFS) will be developed. In particular, in contrast to existing techniques it has the following
advantages:

(1) The use of a spline basis instead of a Fourier basis gives rise to sparse banded matrices
resulting in a smaller computational load (see Section 2.1).

(2) An iterative approach is used to allow more general measurement grids (the RDFS is limited
to rectangular grids) (Section 2.2).

(3) An algorithm is developed (in Section 2.3) to automatically determine the correct model order
(i.e., Nvo).

(4) A two-stage scheme is used to make the data reduction method more robust to outliers
(Section 2.4).

The method, which is discussed in detail in Section 2, is illustrated on SLDV measurements of a
circuit board, a car door and a brake drum in Sections 3.1–3.3. Finally, conclusions will be drawn
in Section 4.
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2. The proposed method

2.1. The spline approximation method

The proposed data reduction method is based on the use of a spline approximation sðxi; yjÞ of a
complex valued vibration pattern zðxi; yjÞ; with i ¼ 1;y;N and j ¼ 1;y;M; where NM ¼ No

(i.e., the outputs are positioned on a rectangular N � M grid). The spline sðxi; yjÞ on the interval
½x1;xN � � ½y1; yM � can be expressed as [8]:

sðx; yÞ ¼
Xg

i¼�k

Xh

j¼�l

ci;jNi;kþ1ðxÞMj;lþ1ðyÞ; ð1Þ

where Ni;kþ1 and Mj;lþ1 are B-splines with knot sequences l0;y; lgþ1 and m0;y;mhþ1 respectively
(note that l0 ¼ x1; lgþ1 ¼ xN ; m0 ¼ y1 and mhþ1 ¼ yM). k and l are the degrees of the spline in the
x and y directions, respectively. The spline coefficients ci;j in Eq. (1) are obtained using the
following least-squares optimization problem (with jj:jj the Frobenius norm):

min
c

jjZ � McNTjj; ð2Þ

where

Z ¼

zðx1; y1Þ y zðxN ; y1Þ

^ ^ ^

zðx1; yMÞ y zðxN ; yMÞ

0
B@

1
CA

is the vibration shape, and

c ¼

c�k;�l y cg;�l

^ ^ ^

c�k;h y cg;h

0
B@

1
CA ð3Þ

the spline coefficients. Further,

N ¼

N�k;kþ1ðx1Þ y Ng;kþ1ðx1Þ

^ ^ ^

N�k;kþ1ðxNÞ y Ng;kþ1ðxNÞ

0
B@

1
CA; ð4Þ

M ¼

M�l;lþ1ðy1Þ y Mh;lþ1ðy1Þ

^ ^ ^

M�l;lþ1ðyMÞ y Mh;lþ1ðyMÞ:

0
B@

1
CA ð5Þ

are the B-spline base functions evaluated at the x and y grid points. Using elementary matrix
operations it can be shown that the solution of Eq. (2) is given by the following expression:

c ¼ ðMTMÞ�1MTZNðNTNÞ�1: ð6Þ

For all measured frequencies f1;y; fN the output locations and the spline knots are the same,
and therefore the matrices N and M are independent of the frequency and should be calculated
only once. In addition, the matrices N and M are sparse matrices with a band structure
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(the columns in N and M have at most Nðk þ 1Þ=ðg þ 1Þ and Mðl þ 1Þ=ðh þ 1Þ non-zero elements,
respectively). This implies a large reduction in the number of operations needed to perform the
products ðMTMÞ�1; ðNTNÞ�1 and MTZN in Eq. (6).
The complete data reduction procedure, starting from the full FRF matrix H to compute the

reduced data set Hvo; is given in the following algorithm:

Algorithm 1. Spline data reduction

(1) Select spline degrees k and l (for simplicity the degree in x and y direction will be taken equal
from now on, i.e., k ¼ l).

(2) Select number of spline knots g and h (the knots are spaced equidistantly, and g ¼ h without
loss of generality). From now on the spline model order is written as Ns ¼ g þ k þ 1 (i.e., this
is equal to the number of columns in N and M).

(3) Compute P ¼ ðMTMÞ�1 and Q ¼ ðNTNÞ�1 (this requires order NsNððk þ 1Þ=ðg þ 1ÞÞ þ N2
s

operations).
(4) FOR i ¼ 1;y;Nf

(a) Compute R ¼ MTZN; with Z the vibration pattern at frequency fi; i.e., Z is one column
from the FRF matrix H: vecðZÞ ¼ Hð:; iÞ:
(NsMNððk þ 1Þ=ðg þ 1ÞÞ þ N2

s Nððk þ 1Þ=ðg þ 1ÞÞ operations, where the first term
dominates since Ns5M).

(b) Solve Eq. (6), by calculation the matrix product c ¼ PRQ

(N3
s operations).

(c) Store the N2
s spline coefficients c as one column of the reduced FRF matrix: Hvoð:; iÞ ¼ vecðcÞ:

(5) END

The spline data reduction algorithm requires order Nf MNNsððk þ 1Þ=ðg þ 1ÞÞ ¼
Nf No

ffiffiffiffiffiffiffiffi
Nvo

p
ððk þ 1Þ=ðg þ 1ÞÞ operations. This is a factor ðg þ 1Þ=ðk þ 1Þ smaller than for the

RDFS method (typically, if k ¼ 2 and g ¼ 14 the spline method is five times faster than the RDFS).

2.2. The missing value problem

In Section 2.1 it was assumed that the output locations were positioned on a rectangular grid.
Although this is quite common for many applications on panel-like structures, it is generally too
restrictive. In the algorithm below, the spline data reduction method is generalized to
measurement grids where particular areas in a rectangular area do not contain measurement
locations (note that it is still assumed that the output locations are positioned on a rectangular
grid, although missing values may occur):

Algorithm 2. Missing value spline data reduction
FOR i ¼ 1;y;Nf

(1) Let the matrix Z be the rectangular vibration pattern at frequency fi; where the locations
zðxI1 ; yI1Þ;y; zðxIn

; yIn
Þ with indices in I are missing (for instance locations at the border or
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holes in a structure). Denote J the set of matrix indices which are measured and
K ¼ f1;y;Nog ¼ I,J:

(2) Obtain starting values for the missing values: for each closed region in ðxI1 ; yI1Þ;y; ðxIn
; yIn

Þ
interpolate the missing values with a cubic polynomial pðx; yÞ: This polynomial is calculated as
the approximating polynomial of the measurements at the border values of the closed region.
Substitute the polynomial values for the missing values: i.e., put zðxI1 ; yI1Þ ¼ pðxI1 ; yI1Þ;y;
zðxIn

; yIn
Þ ¼ pðxIn

; yIn
Þ:

(3) FOR i ¼ 1;y;Niter

(a) Compute the spline coefficients c in Eq. (6) from the matrix Z (including the estimations
of the missing values). The same procedure as in Algorithm 1 is used.

(b) Calculate the spline fit S ¼ MTcN:
(c) Put zðxI1 ; yI1Þ ¼ sðxI1 ; yI1Þ;y; sðxI1 ; yI1Þ ¼ sðxIn

; yIn
Þ as new values for the missing data.

(4) END

It can be proved that the iterative method converges to the least-squares solution (where the
missing values are not used). Compared to the rectangular grid method in Section 2.1, the
missing value spline data reduction method requires Niter times more operations (with Niter

typically 10).
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Fig. 1. Measurement set-up of the circuit board measurement: (a) circuit board, (b) sonometer with microphone, and

(c) laser Doppler vibrometer.
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2.3. The model determination method

A key issue in the success of the data reduction method is the selection of the proper spline
model order Ns (note that Ns ¼ g þ k þ 1 with g the number of internal spline knots and k the
degree of the spline). Indeed, if Ns is taken too low, the fit of the vibration shape will be poor
(note that in that case the system poles will be still correct but the mode shapes will be under
fitted). On the other hand when Ns is too large, the measurement noise will be fitted and the
reduced data are not smooth enough.
In this section a tool will be developed to identify the proper model order. The tool aims at

quantifying whether the residuals of a spline (i.e., s � z) with a certain model order are spatially
uncorrelated (in that case the residuals contain the measurement noise while the spline fit models
the true underlying vibration shape). A test statistic T based on the number of sign changes in the
residuals will be used thereto:

Algorithm 3. Model order determination

(1) Use the vibration shape Z at frequency Nf :
(2) FOR Ns ¼ 3;y;N

(a) Compute the model order Ns spline fit S of Z as in Sections 2.2 or 2.3.
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Fig. 2. Spectra of the circuit board measurement: (a) acoustic pressure, (b) velocity, and (c) FRF: velocity over

pressure.
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(b) Calculate the residuals Q of the spline fit: Q ¼ S � Z:
(c) Evaluate the number of sign changes U in Q: U ¼

PNo�1
i¼1 sgnðqðxIi

; yIi
ÞqðxIiþ1 ; yIiþ1ÞÞ; where

sgnðxÞ ¼ 0 if xX0 and sgnðxÞ ¼ 1 if xo0:
(d) Compute the test statistic T : T ¼ U�No=2ffiffiffiffiffiffiffiffi

No=4
p : When the residuals are uncorrelated, the test

statistic T has a standard normal distribution (see Ref. [9]).
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Fig. 3. Raw and processed operating deflection shapes of the circuit board at 139 Hz: (a) raw operating deflection

shape, (b) spline fit of (a), (c) residuals of spline fit: (a)–(b), (d) raw measurement with outliers removed, (e) iterative

spline fit of (d), (f) coefficients of the fit in (e).
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(3) The correct model order Ns is the smallest order for which T falls into the a% (e.g., a ¼ 5)
confidence level of the standard normal distribution (or the order with the smallest jT j if the
latter does not occur).

2.4. Robustification of the method

Since the spline data reduction method is a least-squares procedure, it will give poor results
when outliers are present in the measurements. In this section an adaptation of the method will be
proposed that can handle a small amount (typically up to 10%) of outliers. This is essential when
processing optical measurements, which typically contain several very poor quality measurement
locations (this is in particular true for SLDV and ESPI measurements on untreated surfaces). The
proposed robust method is a two-stage approach: first the outliers are detected from the residuals
of the least-squares spline fit, then a second least-squares fit of the operating shape with the
outliers removed is performed.
In more detail the algorithm is as follows:

Algorithm 4. Robust spline data reduction
FOR i ¼ 1;y;Nf

(1) Compute the least-squares spline coefficients c in Eq. (6) from the vibration pattern Z at
frequency fi and the spline fit S ¼ MTcN

(2) Calculate the spline fit residuals: Q ¼ S � Z:
(3) Evaluate the MAD [10] of the spline fit residual as a robust measure of the standard deviation:

MADðQÞ ¼ medianðjQ � medianðQÞjÞ:
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Fig. 5. Raw and processed operating deflection shapes of the circuit board at 471 Hz: (a) raw measurement,

(b) iterative spline fit with model order 6, (c) residuals of the iterative spline fit with model order 6, (d) iterative spline fit

with model order 10, (e) residuals of the iterative spline fit with model order 10, (f) iterative spline fit with model order

20, (g) residuals of the iterative spline fit with model order 20.

Fig. 4. Test statistic of the spline fit of the circuit board measurement at 471 Hz versus the increasing model order

(i.e., number of spline knots plus three).
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(4) Find all outlier output locations ðxi; yiÞ where qðxi; yiÞ >
1:96MADðQÞ

0:6745 (the factor 1:96 gives the
5% confidence level, while the denominator term 0:6745 is used to make the MAD consistent
with the standard deviation [10]). Label these locations ðxi; yiÞ;y; ðxm; ymÞ as missing values
(note that at most 10% outliers are taken, thus mo0:1No).

(5) Compute the least-squares spline coefficients and spline fit of the vibration pattern Z with the
missing values at the outliers outputs (using the procedure in Section 2.2).

END

3. Experimental results

In the following sections the robust, missing value spline data reduction method with automatic
model order determination is validated for two experimental examples: a circuit board
(Section 3.1) and a car door (Section 3.2).
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Fig. 6. Test statistic of the spline fit of the circuit board measurement with a fixed model order 10 as a function of the

frequency.

Fig. 7. Measurement set-up of the car door measurement: (a) car door, (b) shaker position with a force cell behind the

door, and (c) laser Doppler vibrometer.
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3.1. Circuit board data

The set-up of the circuit board measurement is shown in Fig. 1. A loudspeaker is used to excite
the circuit board (in the middle, behind the circuit board in Fig. 1). A B&K sound level meter is
used to measure the acoustic pressures, while a Polytec scanning laser Doppler vibrometer is used
to measure the velocity at about 2400 locations (the measurements are performed up to 500 Hz
with 1 Hz frequency resolution). From the measurement spectra in Fig. 2 it can be seen that only
the frequencies above about 150 Hz were excited properly; below 150 Hz the FRFs were to noisy
to allow a correct identification of the modes (this is due to the limited size of the loudspeaker).
In Fig. 3 the robust spline fit of one single vibration pattern (at 139 Hz) is illustrated. Fig. 3b

shows the least-squares spline fit which is computed from the raw measurement. It is clear that the
outliers in the measurement distort the spline fit (due to the outliers the least-squares fit becomes
less smooth). The residuals of the least-squares fit are shown in Fig. 3c. From these residuals the
outliers are identified and these locations are labelled as missing values. The remaining (good
quality) locations are shown in Fig. 3d. From the surface in Fig. 3d the robust spline is computed
(see Fig. 3e). It can be seen that the robust spline fit (Fig. 3e) is much smoother than the least-
squares fit (Fig. 3b). In contrast to the raw data set which contained 2400 output locations, only
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Fig. 8. Spectra of the car door measurement: (a) force, (b) velocity, and (c) FRF: velocity over force.
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144 reduced virtual outputs are required when using the spline coefficients (which are shown in
Fig. 3f). In addition, the reduced measurement is much less noisy than the raw data.
The results of the model order determination procedure on the circuit board data at frequency

471 Hz are shown in Fig. 4: the test statistic T indicates that all model order between 10 and 17
(except 14) give rise to uncorrelated residuals. Indeed, when looking at Fig. 5 it is clear that model
order 10 should be taken instead of, for example, 6 or 20: for model order 6 the residuals (Fig. 5b)
still contain information of the vibration shape, while for model order 20 the spline (given in
Fig. 5f) starts to fit the noise of in the raw measurement (which is shown in Fig. 5a).
For the spline data reduction method the model order should be equal for all frequencies.

In order to see if the chosen model order (i.e., 10) is adequate for all frequencies, the test statistic is
evaluated during the data reduction procedure as shown in Fig. 6. From this figure it is
clear that model order 10 gives good results (i.e., uncorrelated spline fit residuals) for most
frequencies (except for the frequency region below 100 Hz; where the noise level is unacceptably
high).
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Fig. 9. Estimation of starting values for missing values. (a) Different regions in the rectangular measurement area:

white ¼ object; grey ¼ border; black ¼ hole: (b) Border of the different regions in (a). (c) Example measurement (at

235:5 Hz) with missing values indicated in black. (d) Example measurement from (c), missing values are obtained by

extrapolation of the border values.
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The circuit board measurement is an example where the output locations were positioned on a
rectangular grid. In the next section the use of the missing value algorithm (see Section 2.2) will be
demonstrated on a car door.

3.2. Car door data

The car door was excited with an electromagnetical shaker, on which a force cell was mounted.
The velocities up to 250 Hz were measured at 3859 locations with the scanning laser vibrometer
(see the measurement set-up in Fig. 7). The FRFs in Fig. 8 show that about 40 modes are present
in the selected frequency band. Moreover, from the same figure it can also be seen that the quality
of the measurements is quite good (about 40 dB). This was the case because the door was treated
to retro-reflective paint. In order to artificially introduce outliers in the measurement, black velvet
spots were glued to the car door surface (see the black spots in Fig. 7). A reference measurement
was also performed prior to gluing in order to be able to compare the results of the processed raw
(noisy) data (the excitation amplitude was also increased with 20 dB to improve the SNR).
As a first step in the missing value spline data reduction procedure in Section 2.2 starting values

were computed for the missing values (i.e., the locations where no measurement is available
are shown in black and grey in Fig. 9a). Hereto, a cubic polynomial approximation of
the measurement values at the corresponding borders (black and grey in Fig. 9b) is calculated.
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Fig. 10. Iterative spline fit of the car door measurement. (a) Raw operating deflection shape at 235:5 Hz of the

measurement. (b) Spline fit of the deflection shape in (a). (c) Iterative spline fit of the deflection shape in (a). (d) Good

quality reference measurement (without outliers and SNR is 20 dB larger than SNR of the measurement in (a)).
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Table 1

Correlation between reference data and raw or processed data for the car door measurements

Input data H Correlation with Href (in %)

Raw data 64.3

Spline fit 93.1

Robust fit 99.4

Fig. 11. Iterative spline fit of the ESPI brake drum measurement. (a) Raw operating deflection shape of the

measurement. (b) Spline fit of the deflection shape in (a). (c) Iterative spline fit of the deflection shape in (a). (d) Residual

of the spline fit. (e) Residual of the iterative spline fit.
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The function values of the cubic polynomial at the black and grey areas are used as starting values
for the missing data values (in Fig. 9c the missing values are given in black, while Fig. 9d
represents the polynomial fit starting values).
The result of the missing value spline fit data reduction procedure after 10 iterations is shown in

Fig. 10b. When comparing the raw vibration shape (Fig. 10a) with the spline fit (Fig. 10b) it can be
seen that the fit is still quite poor near locations with outliers. The robust fit in Fig. 10c gives a much
better result. Indeed, when comparing the robust fit (Fig. 10c) with the reference data set (without
outliers) one can see that the difference is very small. Quantitatively, the agreement between the
reference vibration shape Href and the raw and processed vibration shapes H can be represented
using the correlation coefficient: r ¼ covðH;Href Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðHÞ varðHref Þ

p
: For the robust fit, almost

100% correlation is obtained, while the raw data only gave 64.3% correlation (see Table 1).

3.3. ESPI data

The proposed data reduction technique can also be applied to ESPI measurements. An example
of a double pulsed ESPI measurement on a brake drum is given in Fig. 11 (for clarity of the figure
the shapes have been subsampled four times). From the residuals in Figs. 11d and e it is clear that
the iterative spline (100 iterations) properly fits the vibration shape, while in the classical spline fit
some information is still present in the residual. This can be seen quantitatively by virtue of the
test statistic T which is given in Table 2 for the brake drum example.

4. Conclusions

In this article a data reduction method based on a robust spline fit has been proposed. Because
of the banded structure of the spline base matrices the method is computationally very attractive.
As opposed to existing methods (such as the RDFS), the developed method can also handle
missing values in the measurement grid. In addition, an automatic model order determination
algorithm is presented to minimize the required user interaction. Three high spatial resolution
measurement examples (on a circuit board, a car door and a brake drum) have shown that the
quality of the reduced measurements is much better than for the raw data (this was in particular
the case when outliers were present in the measurement).
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